

Outline

- Wind Power in Manitoba
- Wind Integration issues
- Short-Term Wind Uncertainty and Variability
- Short-Term Model- 'Vista' DSS Tool
- Application of Vista to Wind Integration

Planning Horizons & Inflow Forecasts

Why is Manitoba Hydro studying Wind Power?

- Manitoba does not require new generation for domestic load until around 2020 but wind power can be exported.
- Another source of power during drought periods when thermal is needed.
- Can be put into service in 1 to 2 years.

Integrating Wind and Hydro

 Manitoba Hydro operates a hydropower system with large reservoirs capable of storing wind energy and shifting it to more valuable periods.

Optimizing Power and

Integrating wind with hydro operations can create a product with high value on export market.

Need to know value of wind power to Manitoba Hydro's system in order to determine purchase price from independent wind developers.

Integrating Wind and Hydro

The ability to get wind power to the market is dependent on flow conditions:

Low Flow

- Reduced import (on-peak & off-peak)
- Reduced operation of thermal
- Increased firm export opportunities

Moderate Flow

- Increased export opportunities to the limit of installed generation or tie-line
- High Flow
 - Virtually no value

Wind Power Integration Issues

- Wind is inherently variable, it can neither be dispatched nor scheduled accurately
- Sub-optimal hydro operations due to short-term variability and uncertainty of wind generation
- Increased reserves for wind

Modelling Framework

Types of Wind Integration Costs in Different Time Horizons

	Transmission Service Costs	Gene	eration Ser	vice Costs	
	Regulation, Load Following & TRM Impacts	Impacts on Short Te Operations	erm	Impacts on Lon Operation	•
	e.g. Need more generation on AGC	e.g. Reduced S.T. operating flexibility to accommodate wind uncertainty		e.g. Increased spill when system can't absorb more energy	
	Electrotek	Model with VISTA ST/ MOST		Model with SPLASH	
Time Horizon	Next Hour		Next Veek	Next Month	Next Year

SPLASH Model

- SPLASH models the system monthly operations for a 35 year period, using 86 years of flow history.
- SPLASH used to predict changes in monthly & seasonal hydraulic operations due to addition of wind
- SPLASH cannot address some of the short-term operating costs associated with wind energy, such as:
 - Cost of increased operating reserves
 - Regulation and Load-following
 - Operational inefficiencies due to the uncertainty of wind generation

Short Term Modelling Issues

- Evaluate sub-optimal hydro operations due to short-term variability and uncertainty of wind generation
- 2. Evaluate lost opportunity cost from increased capacity reserve requirement for wind
 - Regulation reserve for uncorrelated minute to minute variations in net load (on AGC control)
 - Load following reserve for sub-hourly ramp in net load and next hour forecast error (idle capacity reservation)

Vista used to Study Short-term Operational Aspects of Wind

 Short-term hydro operations planning tool used to compare economics of paired cases

Synexus Global will now describe the short-term model (Vista) used to Study Short-term Operational Aspects of Wind

The Short Term Model Vista DSS Suite

- Suite of programs developed under the Hatch-Acres umbrella within Synexus Global.
- An operations model used by dispatchers to schedule generation in a manner that maximizes revenue.
- ST (hour to week) -- LT (week to year) AUTO (Planning)

"Vista" Analysis Tool

A DSS is an computer tool that uses

- Forecasting
- Optimization and Simulation

to find cost effective solutions for:

- Long term energy management
- **Operations**

- Short term scheduling
- Facility upgrading
- Strategic Planning
- Water Management Planning

Studies

Vista Hydro System Components

Winnipeg River

Nelson River

Vista Transmission System Components

Vista Transmission Area

Vista Workings

- Model workings
 - Physical/hydraulic/transmission characteristics and constraints
 - Market Price forecasts
 - Firm Contracts
 - Historical/forecast Inflow sequences
 - Load demands
 - Within-plant dispatch (Unit Operations)
 - Transaction opportunities
 - Reserves
- AUTO Vista
 - Performs analysis over 1 year

Using the Short Term Model for Wind Hydro Integration

- ⇒ Can model wind and capture the effects of the dayto-day and week-to-week wind variability and uncertainty on reservoir operations.
- Can monitor reservoir reshaping
- Can redistribute wind energy to peak hours and/or offset off peak imports because it models market opportunity.

Modelling Wind Hydro Integration

- System Related (Manitoba Hydro)
 - Uncontrolled Lakes and channels
 - Long river reaches and lag times
 - Ice conditions in winter
- Wind Related
 - Uncertainty in wind forecasts
 - Variability in wind energy delivery

Wind Uncertainty and Variability

 Reasonably accurate for the first 24 hrs – High variability from hour to hour

Wind Updating and Optimization

System Transactions

Ref Time: Monday, April 05, 2010 01:00:00

UserID: DHurdowar-Castro

Wind Time Series

- Base No Wind

- 500 MW Wind Capacity

Modelling Reserves

Can model both the variability and uncertainty of wind and the associated reshaping of operations.

Need to include the additional reserve requirement

AGC Reserve Requirement

Modelling Short Term Wind Uncertainty and Variability

- Monthly average energy
- No added reserves

CASE 2

- Perfect foreknowledge on operating day
- Assume monthly average for subsequent days

Wind Ge

OPERATING

DAY i

- Advance daily
- Added reserves

Average and Actual Wind Time Series

File Edit Analyse TableCharter Window Help

Net Transactions

Tie Line Activity

Final Points

- Using MOST (ST Vista)
 - Able to determine the incremental cost associated with a wind supply source (reserves + variability + uncertainty)
 - View the change in Hydro operations to accommodate wind (transactions, reservoir operations, tie-line activity, reserves)
- Further we can
 - Assess different levels of wind capacity
 - Assess the impacts to the transmission system
 - Determine a point of saturation, at what point will the system be saturated and spill is just directly traded off with wind energy.

